In medical applications, microwave sensors are usually employed to work in direct contact with the human body, therefore requiring an accurate prediction of the electromagnetic interactions with biological tissues. While full-wave simulations can be useful to achieve the above task, they are computationally expensive, especially for iterative sensor optimization. Analytical models may offer a more efficient alternative, but they are often complex, and they must be formulated in a practical way to be useful. As a result, approximate approaches can be advantageous. Traditional approaches, such as plane-wave approximations and transmission-line models, often fail to capture key sensing features. This paper presents an approximate analytical model for standard-aperture sensor configurations to predict the sensor response in terms of the reflection coefficient when placed above a layered medium. The model is based on the assumption that the electromagnetic interaction is primarily governed by the sensor’s dominant mode. Full-wave simulations in the 2–3 GHz frequency range (relevant for medical applications) demonstrate strong agreement with the analytical model, thereby validating its effectiveness as a first-order approximation for sensor–tissue interactions. This provides a reliable and computationally efficient tool to properly manage microwave sensors design in medical applications.
Loading....